Sticky DNA formation in vivo alters the plasmid dimer/monomer ratio.

نویسندگان

  • Alexandre A Vetcher
  • Robert D Wells
چکیده

Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 A resolution.

The initiator protein (RepE) of F factor, a plasmid involved in sexual conjugation in Escherichia coli, has dual functions during the initiation of DNA replication which are determined by whether it exists as a dimer or as a monomer. A RepE monomer functions as a replication initiator, but a RepE dimer functions as an autogenous repressor. We have solved the crystal structure of the RepE monome...

متن کامل

Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 resolution

The initiator protein (RepE) of F factor, a plasmid involved in sexual conjugation in Escherichia coli, has dual functions during the initiation of DNA replication which are determined by whether it exists as a dimer or as a monomer. A RepE monomer functions as a replication initiator, but a RepE dimer functions as an autogenous repressor. We have solved the crystal structure of the RepE monome...

متن کامل

Self-assembly of DNA Nanohydrogels with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy

Here, we report the synthesis and characterization of size-controllable and stimuli-responsive DNA nanohydrogels as effective targeted gene delivery vectors. DNA nanohydrogels were created through a self-assembly process using three kinds of building units, respectively termed Y-shaped monomer A with three sticky ends (YMA), Y-shaped monomer B with one sticky end (YMB), and DNA linker (LK) with...

متن کامل

Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation

The accurate partitioning of Firmicute plasmid pSM19035 at cell division depends on ATP binding and hydrolysis by homodimeric ATPase delta(2) (ParA) and binding of omega(2) (ParB) to its cognate parS DNA. The 1.83 A resolution crystal structure of delta(2) in a complex with non-hydrolyzable ATPgammaS reveals a unique ParA dimer assembly that permits nucleotide exchange without requiring dissoci...

متن کامل

Dimer/monomer status and in vivo function of salt‐bridge mutants of the plant UV‐B photoreceptor UVR8

UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet-B (UV-B) light that initiates photomorphogenic responses in plants. UV-B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt-bridge interactions betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 8  شماره 

صفحات  -

تاریخ انتشار 2004